• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Corporate News
  • Generation
  • Oil & Gas
  • Regulation
  • Renewable
    • Climate
    • Solar
    • Wind
  • Storage
  • Tech
  • T & D
Energy News Desk Logo

Energy News Desk

Energy News and Data

Spacecrafts get a boost in 'aerogravity assisted' interactions

June 18, 2020 by Science Daily

In a recent paper published in EPJ Special Topics, Jhonathan O. Murcia Piñeros, a post-doctoral researcher at Space Electronics Division, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil, and his co-authors, map the energy variations of the spacecraft orbits during ‘aerogravity assisted’ (AGA) manoeuvres. A technique in which energy gains are granted to a spacecraft by a close encounter with a planet or other celestial body via that body’s atmosphere and gravity.

In 2019, Voyager 2 became the second human-made object to leave the solar system, following its counterpart Voyager 1. The energy to carry these probes was obtained via interactions with the solar system’s giant planets — an example of a pure gravity assisted manoeuvre.

The topic approached by the paper is one that has been tackled from a number of different angles before, but the team took the novel approach of considering a passage inside the atmosphere of a planet and the effects of the spacecraft’s rotation as it performs such a manoeuvre. During the course of simulating over 160,000 AGA manoeuvres around the Earth, the team adjusted parameters such as masses, sizes and angular momentum, to see how this would affect the ‘drag’ on the spacecraft, thus changing the amount of energy imparted.

The researchers discovered that the larger the values of the area to mass ratio (A/m — the inverse of area density) that they employed in their models the greater the drag was on the probe, and thus, the greater the energy loss it experienced due to this drag, and the lower its velocity was as a result, but it may increase the energy gains from gravity, due to the larger rotation of the velocity of the spacecraft. The same effect also increased the region in which energy losses occurred whilst simultaneously reducing the area in which maximum velocity can be achieved.

Their results indicate that as this is the inverse of area density and density falls off at greater altitudes, drag can be reduced by a trajectory that brings a craft in at higher altitudes. This can eventually approach the values of trajectory given by a pure gravity-assisted AGA.

As the Voyager missions show, when performed at maximum efficiency, AGA manoeuvres have the potential to send humankind beyond the reaches of our solar system into the wider galaxy.

Story Source:

Materials provided by Springer. Note: Content may be edited for style and length.

Original source: Science Daily

Filed Under: Solar

Primary Sidebar

Join The Daily Charge

This week's top 5 stories in your inbox. No spam ever.

Trending

  • Apollo Makes Structured Investment in U.S. Wind Inc.
  • Enel Starts Construction on Lily Solar+Storage Project
  • The Canadian Renewable Energy Association Names President and CEO
  • eia.gov logo U.S. liquefied natural gas exports remain at low levels this summer
  • UMD Researchers Receive Grant to Examine Solar, Agriculture
  • Carbon Trust: 70 GW of Floating Wind Capacity by 2040
  • Offshore Wind Industry Needs 77,000 Trained Workers by 2024
  • Dominion Energy Files CVOW’s Construction, Operations Plan
  • LineVision, OSIsoft Partner to Improve Grid Resiliency
  • Louisiana lawmaker paid to push proposed pipeline through Black, Indigenous communities

Footer

Trending

  • Apollo Makes Structured Investment in U.S. Wind Inc.
  • Enel Starts Construction on Lily Solar+Storage Project
  • The Canadian Renewable Energy Association Names President and CEO
  • U.S. liquefied natural gas exports remain at low levels this summer
  • UMD Researchers Receive Grant to Examine Solar, Agriculture

Recent

  • Quick Tips To A Sustainable Future
  • Stem Provides Smart Energy Storage Solutions to Today’s Power
  • EIA's AEO2021 shows U.S. energy-related CO2 emissions rising after the mid-2030s
  • Homeowners associations still a barrier for some would-be solar customers
  • Commentary: With open standards, U.S. can build EV charging infrastructure faster

Search

Contact Us

Write For Us

  • Email
  • Facebook
  • Twitter

Copyright © 2023 · EnergyNewsDesk.com