• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Corporate News
  • Generation
  • Oil & Gas
  • Regulation
  • Renewable
    • Climate
    • Solar
    • Wind
  • Storage
  • Tech
  • T & D
Energy News Desk Logo

Energy News Desk

Energy News and Data

Newer solar power equipment ages better than older units

July 7, 2020 by Science Daily

Utility-scale photovoltaics, ground-mounted projects larger than 5 megawatts of alternating current, are the largest sector of the overall solar market within the U.S. and the fastest-growing form of renewable power generation.

This fleet of utility-scale photovoltaic projects is relatively young and hasn’t been operating long enough to establish a lengthy history of operational field service. The first utility-scale photovoltaic projects in the U.S. came online in 2007, and most projects have been operating for only a few years.

In the Journal of Renewable and Sustainable Energy, from AIP Publishing, Mark Bolinger and colleagues from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory and the National Renewable Energy Laboratory assess the performance of a fleet of 411 utility-scale photovoltaic projects built within the U.S. from 2007 through 2016.

This fleet produced more than half of all of the solar electricity generated within the U.S. in 2017.

After correcting for variations in weather and curtailment, the group found, on average, the first-year performance of these systems was largely as expected, and that newer projects have degraded at a slower rate than older ones. This suggests photovoltaics technology has improved over time. Interestingly, they also confirmed that projects in hotter climates tend to degrade faster than those in cooler climates.

“A large and rapidly growing market that lacks a lengthy operating history means that investors are fronting a lot of money — $6.5 billion for projects built within the U.S. in 2018 alone — based on as-yet untested assumptions about the long-term performance of these projects,” said Bolinger.

Photovoltaic cells degrade in efficiency and performance over time due to a variety of factors.

“Most photovoltaic module manufacturers warrant that their modules’ performance won’t degrade by more than a certain percentage, for example, losing 0.5% per year, during a 25-year period,” he said. “But module degradation is only part of the story, because the other components of a utility-scale photovoltaic system — the inverter, tracking system, fuses, wiring — can also negatively affect output.”

Many existing studies so far have explored module-level degradation, but the total system-level performance and degradation is what truly affects the bottom line.

“To our knowledge, our study is the first use of fixed effects regression techniques to analyze photovoltaic performance degradation,” Bolinger said. “Unlike other approaches commonly used, fixed effects regression is compatible with low-frequency generation data.”

Because low-frequency generation data tends to be publicly available, in contrast to high-frequency data, which is often proprietary, this new approach is more accessible to researchers and enables large-sample or even fleetwide analyses.

“But the flip side is that lower-frequency data often results in greater uncertainty around degradation estimates,” Bolinger said. “By focusing on system-level rather than module-level performance, our approach provides a more holistic and realistic estimate of long-term investment risk.”

Story Source:

Materials provided by American Institute of Physics. Note: Content may be edited for style and length.

Original source: Science Daily

Filed Under: Solar

Primary Sidebar

Join The Daily Charge

This week's top 5 stories in your inbox. No spam ever.

Trending

  • eia.gov logo U.S. liquefied natural gas exports remain at low levels this summer
  • Dynegy Enters Partnership to Supply Willis Tower with Renewable Electricity
  • As DTE and Consumers Energy Appear to Ignore Industry Suspension Pledge, Michigan PSC Opens Coronavirus Docket and Orders Utilities To Report Current Disconnect Data
  • CIT Group Arranges Letter of Credit Facility for 8minute Solar
  • Volkswagen ordered to offer compensation for emissions scandal
  • Germany’s ‘very, very tough’ climate battle
  • U.N. delays global climate talks amid coronavirus crisis
  • As Russia and Saudi Arabia Retreat, U.S. Oil Industry Avoids the Worst
  • IEA Finalizes Wind Construction Contract In Iowa
  • The Johnson Corner Solar Project Enters Commercial Operation

Footer

Trending

  • Department of Veterans Affairs Approves Solar Exam Reimbursements
  • Silfab Solar Launches New Line of Back-Contact PV Modules
  • Types Of Renewable Energy Generation
  • Leeward Taps GE Renewable Energy to Repower New Mexican Wind Project
  • Texas Governor Receives TGE’s Wind Leadership Award

Recent

  • Quick Tips To A Sustainable Future
  • Stem Provides Smart Energy Storage Solutions to Today’s Power
  • EIA's AEO2021 shows U.S. energy-related CO2 emissions rising after the mid-2030s
  • Homeowners associations still a barrier for some would-be solar customers
  • Commentary: With open standards, U.S. can build EV charging infrastructure faster

Search

Contact Us

Write For Us

  • Email
  • Facebook
  • Twitter

Copyright © 2023 · EnergyNewsDesk.com