• Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • Corporate News
  • Generation
  • Oil & Gas
  • Regulation
  • Renewable
    • Climate
    • Solar
    • Wind
  • Storage
  • Tech
  • T & D
Energy News Desk Logo

Energy News Desk

Energy News and Data

A new battery chemistry promises safer high-voltage lithium-ion batteries

March 27, 2020 by Solar Industry Mag

For the first time, researchers who explore the physical and chemical properties of electrical energy storage have found a new way to improve lithium-ion batteries. They successfully increased not only the voltage delivery of a lithium-ion battery but also its ability to suppress dangerous conditions that affect the current range of batteries. This improved lithium-ion battery could make longer journeys in electric vehicles possible and lead to the creation of a new generation of home energy storage, both with improved fire safety.

Let’s take a moment to think about batteries. They power pretty much every device that isn’t plugged into the wall, maybe even your car. However, despite their usefulness, most people only pay attention to them when they run out of power. But there are safety issues with current lithium-ion batteries that can damage equipment and have been known to start fires. Researchers at the Graduate School of Engineering and Graduate School of Science at the University of Tokyo came up with a way to improve safety and provide more charge.

“A battery’s voltage is limited by its electrolyte material. The electrolyte solvent in lithium-ion batteries is the same now as it was when the batteries were commercialized in the early 1990s,” said Professor Atsuo Yamada. “We thought there was room for improvement, and we found it. Our new fluorinated cyclic phosphate solvent (TFEP) electrolyte greatly improves upon existing ethylene carbonate (EC), which is widely used in batteries today.”

EC is notoriously flammable and is unstable above 4.3 volts; TFEP, on the other hand, is nonflammable and can tolerate greater voltages of up to 4.9 volts. This extra voltage in an otherwise identically sized package can mean the batteries can last longer before they need another charge. As lithium ion-powered electric vehicles proliferate, this extra range and safety would no doubt prove extremely useful.

“We’re proud of this development and its effectiveness came as a bit of a surprise. This is because the way we came up with TFEP was novel in itself, thanks in part to our collaboration with organic chemist Professor Eiichi Nakamura,” continued Yamada. “Most research on electrolytes is a bit trial and error, with slight alterations to the basic chemistry rarely offering any advantage. Our approach came from a theoretical understanding of the underlying molecular structures. We predicted the safe, high-voltage properties before we experimentally verified them. So it was a very pleasant surprise indeed.”

Story Source:

Materials provided by University of Tokyo. Note: Content may be edited for style and length.

Original source: Science Daily

Filed Under: Tech

Primary Sidebar

Join The Daily Charge

This week's top 5 stories in your inbox. No spam ever.

Trending

  • Takkion Holdings Adds O&M Solutions Provider to Offerings
  • Vineyard Wind Appoints Oytan as Deputy CEO
  • NV Energy Receives PUCN Approval for Solar+Storage Projects
  • Emerson Acquires Open Systems Int. Inc.
  • First Semi-Submersible Floating Wind Farm is Fully Operational
  • PSC Approves Expansion of New York’s Clean Energy Standard
  • CPS Energy Issues RFP Seeking Solar, Energy Storage
  • Leeward Completes Construction, Financing on Mountain Breeze Wind Farm
  • The Detective Work Behind Wind Energy
  • Emerson Agrees to Purchase OSI Inc.

Footer

Trending

  • Takkion Holdings Adds O&M Solutions Provider to Offerings
  • Vineyard Wind Appoints Oytan as Deputy CEO
  • NV Energy Receives PUCN Approval for Solar+Storage Projects
  • Emerson Acquires Open Systems Int. Inc.
  • First Semi-Submersible Floating Wind Farm is Fully Operational

Recent

  • Quick Tips To A Sustainable Future
  • Stem Provides Smart Energy Storage Solutions to Today’s Power
  • EIA's AEO2021 shows U.S. energy-related CO2 emissions rising after the mid-2030s
  • Homeowners associations still a barrier for some would-be solar customers
  • Commentary: With open standards, U.S. can build EV charging infrastructure faster

Search

Contact Us

Write For Us

  • Email
  • Facebook
  • Twitter

Copyright © 2023 · EnergyNewsDesk.com